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Abstract - Each triplet has the property of realizing a 
single real frequency transmission zero. Asymmetric filter 
responses can be realized by a cascade of triplet sections. 
This paper describes a Newton-Raphson method for rapid 
solution of the equations, which produces the desired 
coupling matrix for a CT topology. 

I. INTRODUCTION 

The synthesis procedure developed by Atia and 
Williams [l]-[4] for symmetrical filter responses and then 
revised by Cameron [5] for an asymmetric filter response 
produce a multiple coupled generic coupling matrix for 
given scattering parameters S,, and S,,. Then methods 
based on similarity transformations have been used to 
reduce the matrix to a realizable form [5], [6]. However, 
an exact sequence of similarity transformations to obtain 
the cascaded triplet topology is yet to be found. A 
different approach to this problem is presented in this 
paper. 

In the synthesis, a multiple coupled generic matrix 
results from the orthonormalization procedure, which does 
not take the final topology into account. Our approach is 
to perform this orthonormalization procedure, while 
satisfying the network topology. This involves solving a 
system of non-linear equations, which is done using the 
Newton-Raphson method. The paper demonstrates how 
this procedure can be applied to synthesize cascaded 
triplets for filter orders 5, 6 and 7. The transmission 
coefficient calculated from the resultant coupling matrix 
agrees with great accuracy to the synthesized transmission 
coefficient. 

The rest of the paper is arranged as follows. Section II 
describes the background and our approach to the 
problem. ‘Ihen section III shows how it can be applied to 
synthesize a CT topology, followed by results in Section 
IV to validate the presented procedure. Finally, 
conclusions are given. 

II. COWLING MATRIX GENERATION USING THE 
NEWTON-I&WON METHOD FOR CASCADED TRIPLETS 

The full coupling matrix can be defined as [5] 

M =-TAT’ (1) 

where T is an orthomn-mal matrix and Ais a diagonal 
matrix. All matrices are order N, where N is the filter 
order. The synthesis procedure given in [5] extracts the 
first and the last rows of T, the complete diagonal matrix 
A, and the terminal resistances R, and RN for a given 
transmission coefficient (Szl) and reflection coefficient 
(S,,). The remaining rows of T could be found using the 
Gram-Schmidt procedure. Since this orthonormalization 
procedure is independent to the network topology, the 
resultant coupling matrix contains all possible couplings. 

Our approach is to find the remaining N-2 orthonormal 
row vectors of T, which also satisfy the required network 
topology. It is possible to write a system of non-linear 
equations to hold the orthonormality of T as well as the 
zero coupling locations in M in terms of the unknowns in 
T. This system of non-linear equations can be solved 
numerically using the Newton-Raphson (NR) method, 
which converges quadratically near a possible solution 
point. 

Starting with the system of non-linear equations . 

~,(T,.T~,-.JN-~)=O (2) 

the linear Jacobian matrix J can be derived, where 
i=l,2,...,ii, T, denotes the unknown #row of Tand ii 
is the total number of constraints of the system. 

Since the first and last rows of T, and all elements of A ! 
are known, the following conclusions can be made. 
. the number of unknowns L in T is given by 

L=N(N-2) (3) 

. the number of constraints n,. to satisfy orthonormality 
of T can be written as 

(4) 

- The elements M,,, MIN (MN,) and MNN are constants 
and independent of unknown N-2 rows of T. Further 
MIN=O for a transmission coefficient having less than 
N-2 transmission zeros, which is the case for CT 
topology. Thus no constraint is required to set this 
coupling to zero. 
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With this information it is straightforward to find the 
maximum number of forced zero couplings. There are n2 
possible such zeros in the upper triangle of M (M is 
symmetrical), where no is given by 

“2 =L-lq (5) 

However, for some network topologies as the order 
increases the number of forced zero couplings becomes 
more than the maximum given in (5). In such cases, 
careful selection of the constraints could lead to a desired 
result. Section III now demonstrates how this procedure 
can be applied to synthesize a CT topology. 

III. APPLICATION TO CASCADED TRIPLET TOFQLOGY 

Fig. 1 shows the signal flow graphs of the cascaded 
triplets for N=5,6 and 7. 
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Fig. I. Signal flow graphs for cascaded triplet topology (a) 5’ 
order (b)-6” order (c) 7’ order. 

Table I provides the details to compose the system of 
non-linear ‘equations to find the coupling matrix for the 
orders 5,6 and 7, using the proposed method. For a single 
triplet case (N=3) the unknown orthonormal row vector in 
T can be found by three constraints for orthonormality 

only. Thus the orthonormalization procedure is 
independent of the network topology. Therefore even the 
Gram-Schmidt procedure could provide the remaining row 
of T. However this is not the case for higher orders. For 
N=5, twelve constraints for orthonormality and three 
constraints M,r=O, M,=O and Mzs=O compose the system 
of equations to find the three remaining rows of T, using 
the proposed method. 

TABLE I 
SUMMARY OF CONSTRAINTS NEED TO BE SATIS~ED FOR VARYINO 

For orders 6 and 7, the number of constraints are one 
more than the degrees of freedom, making the system of 
equations unsolvable unless a redundancy is found. The 
following rules enable relaxation of one constraint, 
making the system of equations solvable by the proposed 
pWXiUrC 
1. Since the coupling matrix is real and symmetric no 

constraints for orthonormality can be relaxed. 
2. Direct analysis of the numerator of transmission 

coefficient S21 calculated from the coupling matrix 
shows that it is possible to relax any one of the 
constraints to force a zero in the first row (Mix) or last 
column (Mm) of M, if either of M,n or Mm is non-zero 
in the final matrix, where k =2, 3, . . . . N-I. Note that 
other constraints cannot be relaxed in this way. 

Thus any one of the constraints for zenx in M given in 
brackets can be relaxed for 6th and 71h orders. However 
this makes the system of equations to converge to two 
possible solutions depending on the initial values selected 
for the NR procedure. One solution leads to the CT 
realization, while the other contains a non-zero coupling 
value corresponding to the relaxed constraint. Using a 
priori knowledge of the two possible solutions, iterations 
can be repeated with a fresh set of initial values till it 
converges to the correct topology. The results given in the 
next section shows that it is possible to obtain a realizable 
coupling matrix following this procedure, with only a few 
iterations. 
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IV. RESULTS 

A 7” order asymmetric filter response with return loss 
24 dB and transmission zeros at +1.5 j, 2 j is synthesized 
to demonstrate the validity of the proposed procedure. For 
the above specifications terminal resistances can he 
calculated as R,=1.14244 RN=1.1423R The proposed 
method extracts the following coupling matrix M for a CT 
topology 

Here the constraint MJs=O was dropped while forming the 
system of non-liner equations. The maximum residue of 
zero couplings of this resultant matrix is less than 10-12. 
Fig. 2 shows the frequency response synthesized. The 
response calculated directly from the coupling matrix M 
coincides with this response, showing the accuracy of the 
proposed method. 

Normalwed +re&ncy 
2 3 

Fig.2 Transmission and reflection coefficient of kilter 
response synthesized. 

Table II provides the average number of iterations 
needed to obtain the final coupling matrix with a Cf 
topology for orders considered in this paper. The average 
value is found by following the procedure with 20 
different sets of initial values, which are uniformly 
distributed between 0 and 1. It can be observed that filter 
order 6 and 7 require more iterations, since the iteration 
procedure has to be repeated until the correct topology has 
been achieved. Note that the computation time needed for 

100 iterations on a Pentium II, 45OMHz PC is about 60 s 
for N=7. 

TABLE Il 
AVERAGE NUMBER OF ITERATIONS FOR ORDERS 5, 6 AND 7 FOR A 
RETURN LOSS OF 24 dB. 

V. CONCLUSIONS 

A novel approach for the synthesis of cascaded triplets 
based on solving a non-linear equation set has been 
presented. As the order increases, it turns out that the 
number of equations become more than the degrees of 
freedom. However, it has been shown that careful 
selection of constraints makes it possible to obtain the 
required coupling matrix for orders 5, 6 and 7. Even 
though this method cannot be applied for higher orders 
due to the problem stated, the orders considered can 
provide the specifications required for many applications. 
Specially the sixth order topology could be used when 
cascading triple mode cavities to form a CT structure. 
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