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Abstract - Each triplet has the property of realizing a
single real frequency transmission zero. Asymmetric filter
responses can be realized by a cascade of triplet sections.
This paper describes a Newton-Raphson method for rapid
solution of the equations, which produces the desired
coupling matrix for a CT topology.

I. INTRODUCTION

The synthesis procedure developed by Atia and
Williams [1]-[4] for symmetricat filter responses and then
revised by Cameron [5] for an asymmetric filter response
produce a multiple coupled generic coupling matrix for
given scattering parameters Sy and §;;. Then methods
based on similarity transformations have been used to
reduce the matrix to a realizable form [5], [6]. However,
an exact sequence of similarity transformations to obtain
the cascaded tripiet topology is yet to bc found. A
different approach to this problem is presented in this
paper.

In the synthesis, a multiple coupled generic matrix
results from the orthonormalization procedure, which does
not take the final topology into account. Our approach is
to perform this orthonormalization procedure, 'while
satisfying the network topology. This inveolves solving a
system of nen-linear equations, which is done using the
Newton-Raphson method. The paper demonstrates how
this procedure can be applied to synthesize cascaded
triplets for filter orders 5, 6 and 7. The transmission
coefficient calculated from the resultant coupling matrix
agrees with great accuracy to the synthesized transmission
coefficient.

The rest of the paper is arranged as follows. Section II
describes the background and our approach to the
problem. Then section III shows how it can be applied to
synthesize a CT topology, followed by results in Section
IV to validate the presented procedure. Finally,
conclusions are given.

II. CouPLING MATRIX GENERATION USING THE
NEWTON-RAPHSON METHOD FOR CASCADED TRIPLETS

The full coupling matrix can be defined as [5]
M =-TAT' (1

where 7 is an orthonormal matrix and Ais a diagonal
matrix. All matrices are order N, where N is the filtey
order. The synthesis procedure given in [5] exiracts the
first and the last rows of T, the complete diagonal matrix
A, and the terminal resistances R; and Ry for a given
transmission coefficient ($;) and reflection coefficient
(S511). The remaining rows of T could be found using the
Gram-Schmidt procedure. Since this_orthonormalization
procedure is independent to the network topoiogy, the
resultant coupling matrix contains all possible couplings.

Our approach is to find the remaining N-2 orthonormal
row vectors of T, which also satisfy the required network
topology. It is possible to write a system of non-linear
equations to hold the orthonormality of T as well as the
zero coupling locaticns in M in terms of the unknowns in
T. This system of non-linear equations can be solved
numerically using the Newton-Raphson (NR) method,
which converges quadratically near a possible solution
point.

Starting with the system of non-linear equations

ﬁ(TQ,T3_ Ty )=0 (2)

the linear Jacobian matrix J can be derived, where
i=12,.-.,7t, T, denotes the unknown # row of Tand n
is the total number of constraints of the system.

Since the first and last rows of T, and all elements of A !
are known, the following conclusions can be made.
*  the number of unknowns L in T'is given by

L=N(N-2) (3

= the number of constraints ny, to satisfy orthonormality
of T can be written as

N-1
np = i+N (4
=

= The elements M;;, M,y (My;) and Myy are constants
and independent of unknown N-2 rows of 7. Further
M ;=0 for a transmission coefficient having less than
N-2 transmission zeros, which is the case for CT
topology. Thus no constraint is required to set this
coupling to zero.
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With this information it is straightforward to find the
maximum number of forced zero couplings. There are n,
possible such zeros in the upper triangle of M (M is
symmetrical), where n; is given by

ny =L-ng (3)

However, for some network topologies as the order
increases the number of forced zero couplings becomes
more than the maximum given in (5). In such cases,
careful selection of the constraints could lead to a desired
result. Section Il now demonstrates how this procedure
can be applied to synthesize a CT topology.

II. APPLICATION TO CASCADED TRIPLET TOPOLOGY

Fig. 1 shows the signal flow graphs of the cascaded
triplets for N=5, 6 and 7.

©

Fig. 1.  Signal flow graphs for cascaded triplet topology (a) 5™
order (b)'6Lll order (c) 7™ order.

Table T provides the details to compose the system of
non-linear ‘equations to find the coupling matrix for the
orders 5,6 and 7, using the proposed method. For a single
triplet case (N=23) the unknown orthonormal row vector in
T can be found by three constraints for orthonormality

only. Thus the orthonormalization procedure is
independent of the network topology. Therefore even the
Gram-Schmidt procedure could provide the remaining row
of T. However this is not the case for higher orders. For
N=5, twelve constraints for orthonormality and three
constraints M,=0, M,,=0 and M;5=0 compose the system
of equations to find the three remaining rows of 7, using
the proposed method.

TABLE ]
SUMMARY OF CONSTRAINTS NEED TO BE S ATISFIED FOR VARYING
FILTER ORDERS

N L m Constraints for zero couplings

3 3 3 -

5 15 12 My Moy Mo

6 24 18 My, M5, My,
(M4, M5, M 55, My)

7 35 23 Moy, Mos, M. M 5,
Mo, M4 My,
(M5, Mg, M M 5;)

For orders 6 and 7, the number of constraints are one
more than the degrees of freedom, making the system of
equations unsolvable unless a redundancy is found. The
following rules enable relaxation of one constraint,
making the system of equations solvable by the proposed
procedure.

1. Since the coupling matrix is real and symmetric no
constraints for orthonormality can be relaxed.

2. Direct analysis of the numerator of transmission
coefficient §; calculated from the coupling matrix
shows that it is possible to relax any one of the
constraints to force a zero in the first row (M};) or last
column (M) of M, if either of M, or M,y is non-zero
in the final matrix, where k =2, 3, ..., N-1. Note that
other constraints cannot be relaxed in this way.

Thus any one of the constraints for zeros in M given in
brackets can be relaxed for 6™ and 7™ orders. However
this makes the system of equations to converge to two
possible sclutions depending on the initial values selected
for the NR procedure. One solution leads to the CT
realization, while the other contains a non-zero coupling
value corresponding to the relaxed constraint. Using a
priori knowledge of the two possible solutions, iterations
can be repeated with a fresh set of initial values till it
converges to the correct topology. The results given in the
next section shows that it is possible to obtain a realizable
coupling matrix following this procedure, with only a few
iterations.
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IV. RESULTS

A 7" order asymmetric filter response with return loss
24 dB and transmission zeros at +1.5j,2 is synthesized
to demonstrate the validity of the proposed procedure, For
the above specifications terminal resistances can be
calculated as R;=1.14240, Ry=1./423£2 The proposed
method extracts the following coupling matrix M for a CT
topology

0.0059 -0.7825 04290 00000 0.0000 00000 0.0000
—0.7825 -0.5735 -0507% 00000 00000 0.0000 00000
0.4290  -0.5079  0.0840 05060 -0.2658 0.0000 0.0000

M =| 00000 00000 05060 05429 05028 0.0000 0.0000
00000 00030 -02658 05028 00657 05645 0.2967
0.0000 00000 0.0000 0.0000 05645 -0.3988 0.8416
0.0000 0.0000 0.0000 00000 02967 0.8416 0.0059

Here the constraint M,;s=0 was dropped while forming the
system of non-liner equations. The maximum residue of
zero couplings of this resultant matrix is less than 102,
Fig. 2 shows the frequency response synthesized. The
response calculated directly from the coupling matrix M
coincides with this response, showing the accuracy of the
proposed method.
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Fig.2.  Transmission and reflection coefficient of filter

response synthesized.

Table II provides the average number of iterations
needed to obtain the final coupling matrix with a CT
topology for orders considered in this paper. The average
value is found by following the procedure with 20
different sets of initial values, which are uniformly
distributed between 0 and 1. It can be observed that filter
order 6 and 7 require more iterations, since the iteration
procedure has to be repeated until the correct topology has
been achieved. Note that the computation time needed for

100 iterations on a Pentium I1, 450MHz PC is about 60 s
for N=7.

TABLE I
AVERAGE NUMBER OF ITERATIONS FOR ORDERS 5, 6 AND 7 FOR A
RETURN LOSS OF 24 dB.

N | Locations of transmission Average no. of iterations
ZE108 :

S L+ LS 11
-1.5§, 3§ 11
1.5], 3j 13

6 | +-15j 57
-1.5§, 2.4 28
1.5}, 2.4j 22

7 ) -1.51, 1.8, 2.2 37
-2j, 1.8, 2.2j 38
1.5, 2.3}, 3i 92

V. CONCLUSIONS

A novel approach for the synthesis of cascaded triplets
based on solving a non-linear equation set has been
presented. As the order increases, it turns out that the
number of equations become more than the degrees of
freedom. However, it has been shown that careful
selection of constraints makes it possible to obtain the
required coupling matrix for orders 5, 6 and 7. Even
though this method cannot be applied for higher orders
due to the problem stated, the orders considered can
provide the specifications required for many applications.
Specially the sixth order topology could be used when
cascading triple mode cavities to form a CT structure.
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